
Timesheets.js: Tools for Web Multimedia

Fabien Cazenave, Vincent Quint
INRIA

655 avenue de l’Europe
38334 Saint Ismier, France

{fabien.cazenave, vincent.quint}@inria.fr

Cécile Roisin
Grenoble University, INRIA

655 avenue de l’Europe
38334 Saint Ismier, France
cecile.roisin@inria.fr

ABSTRACT
Timesheets.js is a JavaScript library for publishing multime-
dia web documents that take advantage of the new features
of HTML5 and CSS3. The library allows web developers
to extend their skills to synchronized multimedia contents.
This technology has been experimented in a class where stu-
dents had to implement an XSLT transformation for con-
verting OpenOffice Impress presentations into web formats.
The resulting slideshows run in web browsers thanks to the
timesheets.js library.

Categories and Subject Descriptors
I.7 [Document and Text Processing]: Document Prepa-
ration—Languages and systems, Markup languages

General Terms
Design, Experimentation

Keywords
Declarative languages, Multimedia web applications, SMIL,
HTML5, Timesheets

1. INTRODUCTION
The SMIL language has been available for a while for pub-

lishing multimedia applications on the web, but the lack
of widely deployed tools has limited its impact. Among
its most attractive capabilities are its timing and synchro-
nization features, but fortunately these features are not re-
stricted to the SMIL language and can be added to other
document languages.
With the advance of HTML5, and notably its new graphic,

audio and video contents, it is now possible to develop mul-
timedia standard-based applications that can run natively
in web browsers. The only missing piece is the SMIL fea-
tures, that are not currently supported by browsers, but this
problem can be solved by implementing these features in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Multimedia 2011, November 28–December 1, 2011, Scottsdale, Ari-
zona, USA.
Copyright 2011 ACM xxx-x-xxxxx-xxx-x/xx/xxxx ...$10.00.

JavaScript. This is what we have done with the timesheet.js
library.

With this library, sophisticated multimedia applications
can be developed in a completely declarative way, and based
on languages that are widely known to web developers, such
as HTML and CSS. This approach is also interesting for
teaching. The timing and synchronization concepts on which
SMIL is based are very convenient for introducing students
to the multimedia domain. We were used to present these
concepts to students with the SMIL language, separately
from other web languages. They can now be taught in the
same context and with a more consistent approach.

The rest of the paper is organized as follows: the next
section presents the timesheets.js library. Section 3 gives an
example of a media annotation application that runs in the
browser with this library. Finally section 4 explains how
these tools are used in a course on XML and multimedia.

2. THE TIMESHEETS.JS LIBRARY
SMIL has been thought as a full specification describing

all aspects of a multimedia document: content, presentation,
synchronization, and interaction. However, the SMIL 3.0
Timing and Synchronization module1 (a.k.a. SMIL Timing)
is also designed to be integrated into other host languages,
thus bringing synchronization and user interaction features
to otherwise a-temporal document languages. As specified
in this module, timing can be inserted inline in the markup
of a static document thanks to two attributes for timing
integration: timeContainer and timeAction.2

SMIL Timimg is complemented by another W3C spec-
ification, SMIL Timesheets,3 that allows the most signifi-
cant SMIL timing features of a document to be gathered
in external resources called timesheets, thus separating the
timing and synchronization aspects from the host language,
and allowing time behavior to be shared among several doc-
uments. To paraphrase the SMIL Timesheets specification,
SMIL Timing and SMIL Timesheets can be seen as a tempo-
ral counterpart of inline style and external CSS stylesheets,
respectively.

2.1 Using HTML5, CSS3 and SMIL Timing
The solution we propose [1] is to combine HTML5+CSS3

and SMIL Timing/Timesheets. We take advantage of the re-
cent addition of new media objects such as audio and video

1http://www.w3.org/TR/smil/smil-timing.html
2http://www.w3.org/TR/SMIL3/smil-timing.html#q48
3http://www.w3.org/TR/timesheets/

to HTML5, and new style properties such as animation and
transition to CSS3. The addition of SMIL Timing extends
these multimedia features significantly. It allows, for in-
stance, some discrete parts (text, images) of a HTML page
to be synchronized declaratively with the continuous parts
or with other discrete parts. This also allows user interaction
to be specified in a purely declarative way.
Our approach can be summed up in three points:

• use HTML5+CSS3 for structuring and styling the con-
tent and for rendering it natively in the browser with
a clean content/presentation separation;

• rely on SMIL Timing/Timesheets to handle timing,
media synchronization, and user interaction;

• do not redefine timing features that already exist in
HTML, SVG and CSS (e.g. animations and transi-
tions).

This approach applies to a very broad range of interactive
synchronized multimedia web applications,4 such as slide
shows, captioned video clips, annotated audio recordings,
graphic animations, augmented recorded conferences, inter-
active photo albums, web documentaries, and so on. All
these applications can be developed using only declarative
languages, thus making multimedia web authoring available
to a broader audience. The declarative approach also pro-
vides advantages from an engineering point of view. It makes
it easier to maintain and reuse content, as opposed to the
purely scripting approach.

2.2 A Basic Example
As an example, here is the very simple case of a rotating

banner.

<script type="text/javascript" src="timesheets.js"/>

<link href="banner.smil" rel="timesheet"

type="application/smil+xml"/>

<div id="banner">

</div>

where file banner.smil is a timesheet containing:

<?xml version="1.0" encoding="UTF-8"?>

<timesheet xmlns="http://www.w3.org/ns/SMIL">

<seq repeatCount="indefinite">

<item select="#banner img" dur="3s"/>

</seq>

</timesheet>

The three images are turned by the timesheet into items
displayed in a sequence, each one during 3 seconds, and this
sequence is repeated indefinitely.
Like in CSS, selectors are used to associate elements from

the HTML document with time behaviors defined in the ex-
ternal timesheet. For instance, the select attribute of ele-
ment item performs a querySelectorAll() action: for each
DOM node that is matched by the #banner img selector, a
SMIL item is created. This allows the same timesheet to be
reused for several HTML pages: the SMIL timesheet above
always works whatever the number of images in the banner.
4see http://wam.inrialpes.fr/timesheets/

2.3 Timesheets Engine
As SMIL Timing and Timesheets are not supported na-

tively by web browsers, a JavaScript implementation of these
specifications is required to make them available widely.
Therefore, we have developed timesheets.js which is an open-
source, cross-browser, dependency-free library that supports
the common subset of the SMIL Timing and Timesheets
specifications.

This library parses the SMIL Timing data (both inline
timing and timesheet files), finds all DOM elements that are
targeted (for instance, the img elements that are selected by
item nodes in the banner.smil example above), creates a
smil attribute on each of them with the value “idle”, and
schedules the activation of each target DOM element.

This scheduler acts on these DOM elements when they
are activated:

• the smil attribute is set to “active” (if web browsers
supported SMIL Timing natively, this would be a CSS
pseudo-class);

• if the timeAction attribute is set, a specific CSS style
rule is applied (e.g. “display: none”, “visibility: visi-
ble”, or a class is added);

• the DOM element fires a ‘begin event.

When the target element has to be deactivated, its smil

attribute is set to “done”, the specific style rule (if any) is
removed, and an “end” event is fired.

This implementation obviously relies on JavaScript, but as
stated above, no specific JavaScript development is required
from a web developer. When an application is running, some
parts of it (HTML and CSS) are executed natively by the
browser, some other parts are executed by the browser’s
JavaScript engine.

Timesheets.js is not the first SMIL Timesheets engine run-
ning in the browser. Vuorimaa [2], for instance, has de-
veloped a Timesheets JavaScript Engine, but it was before
HTML5. Therefore, it can synchronize only discrete con-
tents.

Our implementation is available in open source under the
MIT license. It is rather compact (about 2000 lines of code),
and the whole engine is less than 10 Kbytes in the mini-
fied/gzipped version. There is no need to install anything
for using timesheets.js; a script link in the HTML page
to the on-line library5 is enough (see first line of the above
example).

Technically speaking, the timesheet scheduler is very mod-
ular by design:

• Each time container node has its own clock, methods,
properties and event handlers.

• Each time container parses its own descendants (time
nodes) and pre-computes the begin/end times accord-
ing to its temporal behavior: sequential, parallel or
exclusive.

• All time containers expose a significant part of the
HTMLMediaElement API (which is exposed by the
audio and video elements of HTML5): web develop-
ers can control SMIL time containers with the usual
.play() / .pause() methods, check the time with

5http://wam.inrialpes.fr/timesheets/public/timesheets.js

the .currentTime property and register to standard
timeupdate DOM events.

3. APPLICATION: INA WEBRADIO
We have worked with INA, the French national archive

of audiovisual, to publish on the web archived radio pro-
grams enhanced with associated material.6 A typical INA
Webradio page involves (see Figure 1):

• a rich audio player, i.e. a segmented timeline display-
ing a specific HTML fragment for each section of the
audio track (bottom of Figure 1);

• buttons that users can click to display complementary
content – possibly involving other multimedia sources
(top right corner of Figure 1).

Figure 1: INA Webradio application

The idea is to propose a visually enhanced experience of
a radio program, while allowing users to browse the content
in a non-linear way, for instance with the table of contents
(Sommaire) of Figure 1.

3.1 Document Processing Workflow
INA uses a SCENARI-based, XML publishing workflow

to create multimedia documents. The SCENARI 7 author-
ing environment is used to divide a continuous media object
(the recorded radio program) into several contiguous time
segments, to associate an HTML fragment to each time seg-
ment, and finally to publish a dynamic multimedia docu-
ment as a Flash object. One of the main limitations of
this workflow, besides the usual Flash-related issues (acces-
sibility, indexability, compatibility with mobile devices. . .),
is that neither content authors nor web designers can con-
trol efficiently the presentation of resulting multimedia doc-
uments.
Our approach here is to keep the SCENARI content ed-

itor, but publish multimedia documents in HTML5 + CSS
+ SMIL Timesheets, in order to separate:

• content: every HTML fragment is defined in SCE-
NARI;

6http://wam.inrialpes.fr/timesheets/public/webRadio/
7http://scenari-platform.org/projects/scenari/en/pres/

• synchronization: SMIL Timesheets are used both to
define time segments on the main audio track and to
describe user interactions;

• presentation: generic CSS stylesheets can be defined
by web designers for a consistent integration of these
multimedia documents in the main website, and con-
tent authors can use specific style rules when necessary.

The idea here is to keep the efficiency of an XML pub-
lishing workflow and the benefits of CSS style sheets, while
allowing multimedia documents to be modified in a way that
is familiar to all web developers. The only specific part is
the timesheet below:

<timesheet xmlns="http://www.w3.org/ns/SMIL">

<!-- slide show / main section -->

<excl timeAction="display" mediaSync="#main"

controls="#timeController" dur="20:47">

<item select="#section1" begin="00:00.000"/>

<item select="#section2" begin="01:12.120"/>

<item select="#section3" begin="04:41.742"/>

</excl>

<!-- extra material: multimedia pages -->

<excl>

<item select="#extra2"

begin="open2.click; toc-extra2.click"

end="close2.click; section2.end"/>

<item select="#extra3"

begin="open3.click; toc-extra3.click"

end="close3.click; section3.end"/>

</excl>

<!-- extra material: audio -->

<par mediaSync="#track2a" controls="#timeline2a"

dur="2:24.039"/>

<par mediaSync="#track2b" controls="#timeline2b"

dur="3:59.928"/>

<!-- extra material: rotating pictures -->

<seq timeAction="display"

repeatCount="indefinite">

<item select="#extra4 img" dur="3s"/>

</seq>

</timesheet>

3.2 Direct Editing
The goal of this modular approach is to enable “wysiwyg”,

fine-grain editing of the resulting multimedia documents.
With the initial document processing workflow, content

editors could specify the semantic content for each audio
section but had no easy way to refine the resulting docu-
ment: that was a one-way, XML-to-Flash conversion. Every
modification had to be done within the XML editor, then
published in Flash to see how it looks like – and that only
applied to semantic content. Now that the multimedia doc-
ument is published in HTML5, it is possible to fine-tune all
timing and presentation details, after conversion, directly in
a Firefox extension.

Another benefit with the new workflow is that the work-
load can be shared efficiently between content authors and
web designers: as presentation is entirely defined by CSS
style sheets, web designers can work directly on the pub-
lished multimedia documents to adapt the look to the web-
site and to propose visual transitions between successive
time segments, and content authors can see how all HTML
fragments are displayed with these style sheets.

As the content, presentation and synchronization data are
defined in three separate resources (HTML5, CSS and SMIL
Timesheets, respectively), all local modifications can be eas-
ily backported to the XML publishing chain.

3.3 Browser Support
These HTML5+SMIL Timesheets multimedia documents

are supported natively by all modern desktop browsers im-
plementing the audio and video tags. As a consequence,
users of the HTML5 version of the INA Webradio pages get
a better user experience with the native multimedia player of
these browsers: better responsiveness, better CPU resource
usage.
Unlike the Flash version, the HTML5 Webradio pages can

be served to mobile devices: most smartphones support the
audio and video tags natively and can play multimedia re-
sources without draining the battery. As the layout is de-
fined by style sheets, a specific touchscreen layout can be
served to mobile devices with a simple declarative CSS me-
dia query.

3.4 Extensibility: DOM Events, JavaScript
Most of the synchronization logic and user interaction can

be defined with SMIL Timesheets. However, there are cases
where a more specific dynamic interaction should be imple-
mented.
For this purpose, each node fires a begin and an end DOM

event when it is activated and deactivated by the timesheet
scheduler, respectively. This allows some specific JavaScript
code to be triggered easily – either with an onbegin / onend

attribute in the HTML document, or with event listeners in
the JavaScript code.
Besides the APIs mentioned in section 2.3 that can be used

to control time containers, timesheets.js also exposes an API
that allows time containers to be created dynamically. This
mechanism is used in the timesheets-controls.js com-
panion library to display a segmented media timeline and to
keep it synchronized with the main audio track.

4. TEACHING WEB MULTIMEDIA WITH
TIMESHEETS.JS

We have experienced a first course with the timesheets.js
library. This course was dedicated to XML technologies
and addressed XML schema definitions, the XSLT language
and multimedia documents. Basic web technologies such as
HTML and CSS were already known to students through
previous courses. A few classes were given and then most of
the work was to realize a complete project in small groups.
The goal of the project was to implement a process that:

1) merges several OpenOffice Impress presentations, and 2)
transforms the result into a web document that includes
navigation and animation features.
The testbed source documents contain simple slides as

well as animated text and graphics. It is worth noting that
the name space used by OpenOffice documents for anima-
tions is the SMIL one. It was suggested to the students
to generate HTML5 content with appropriate style sheets
and to reuse the slideshow structures and styles available
on-line.8

Most groups succeeded in producing an animated web
slideshow and proved a good understanding of both XML

8http://wam.inrialpes.fr/timesheets/

transformation techniques and sound structuring of multi-
media documents on the web. As an example, Figure 2
shows the architecture of a project along with the generated
files.

Figure 2: A student project

In the evaluation of the course, students have indicated
that this project brought them a better perception of the
role of the different languages of the web, including SMIL.
The main difficulties they encountered were to master the
XSLT language and to face the complexity of the OpenOffice
style definitions.

5. CONCLUSION
We have presented the timesheets.js library and two use

cases of this open technology for the web. The first one,
Webradio, shows how it can be used for producing standard-
based, high quality multimedia presentations, while the sec-
ond one describes a teaching experience. The source code of
the library and various examples are available on-line and
developers are welcome to contribute on GitHub.9

We are currently working in two directions to 1) develop
an authoring tool for media segmentation and annotation
and 2) experiment microformats (such as HTML Slidy10) for
rendering multimedia presentations with slideshow effects.

6. ACKNOWLEDGEMENTS
The work presented in this paper was done in the C2M

project, funded by the French National Research Agency
(ANR) under its CONTINT 2009 program. The authors
are grateful to Dominique Saint-Martin from INA-GRM for
providing the Webradio application.

The authors thank also Stéphane Bonhomme, the teacher
of the XML course of LP SIL and the students of that class
that have experimented with timesheets.js.

7. REFERENCES
[1] F. Cazenave, V. Quint, and C. Roisin. Timesheets.js:

When SMIL meets HTML5 and CSS3. In DocEng

2011: Proceedings of the Eleventh ACM Symposium on

Document Engineering. ACM, Sept. 2011.

[2] P. Vuorimaa. Timesheets JavaScript Engine,
http://www.tml.tkk.fi/˜pv/timesheets/, 2007.

9https://github.com/fabi1cazenave/timesheets.js
10http://www.w3.org/Talks/Tools/Slidy2/

